Abrardi, L., Cambini, C., & Rondi, L. (2021). Artificial Intelligence, Firms and Consumer Behavior: A Survey. Journal of Economic Surveys (Early view, 26.07.2021), pp. 1-23.
Assad, S., Calvano, E., Calzolari, G., Clark, R., Denicolò, V., Ershov, D., Wildenbeest, M. (2021). Autonomous Algorithmic Collusion: Economic Research and Policy Implications. Oxford Review of Economic Policy, 37(3), pp. 459-478.
Assad, S., Clark, R., Ershov, D., & Xu, L. (2020). Algorithmic Pricing and Competition: Empirical Evidence from the German Retail Gasoline Market. Queen's Economics Department Working Paper No. 1438.
Autorité de la concurrence; Bundeskartellamt (2019). Algorithms and Competition. Bonn & Paris.
Beneke, F., & Mackenrodt, M. O. (2019). Artificial Intelligence and Collusion. IICInternational Review of Intellectual Property and Competition Law, 50(1), pp. 109134.
Bernhardt, L., Dewenter, R. (2020). Collusion by Code or Algorithmic Collusion? When Pricing Algorithms Take Over. European Competition Journal, 16(2-3), pp. 312-342.
Blagoycheva, H. (2021). Izkustven intelekt i korporativna sotsialna otgovornost – sblasak i novi vazmozhnosti. Izvestiya. Spisanie na Ikonomicheski universitet – Varna, 65(1), s. 55-69. [Благойчева, Х. (2021). Изкуствен интелект и корпоративна социална отговорност – сблъсък и нови възможности. Известия. Списание на Икономически университет – Варна, 65(1), с. 55-69] (in Bulgarian).
Calvano, E., Calzolari, G., Denicolo, V., & Pastorello, S. (2021). Algorithmic collusion with imperfect monitoring. International Journal of Industrial Organization, 79, pp.111.
Calvano, E., Calzolari, G., Denicolo, V., & Pastorello, S. (2020a). Artificial Intelligence, Algorithmic Pricing, and Collusion. American Economic Review, 110(10), pp. 326797.
Calvano, E., Calzolari, G., Denicolò, V., Harrington, J. E. & Pastorello, S. (2020b). Protecting Consumers from Collusive Prices due to AI. Science, 370(6520), pp. 10401042.
Calvano, E., Calzolari, G., Denicolo, V., Pastorello, S. (2019). Algorithmic Pricing: What Implications for Competition Policy? Review of Industrial Organization, 55(1), pp. 155-171.
Competition & Markets Authority, CMA (2018). Pricing Algorithms. Economic working paper on the use of algorithms to facilitate collusion and personalised pricing. Available at https://assets.publishing.service.gov.uk/government/uploads/system/ uploads/attachment_data/file/746353/Algorithms_econ_report.pdf.
Ezrachi, A. & Stucke, M. E. (2017). Artificial Intelligence & Collusion: When Computers Inhibit Competition. University of Illinois Law Review, 2017, pp. 1775-1810.
Ezrachi, А., Stucke, M. E. (2016). Virtual Competition. Cambridge, MA: Harvard University Press.
Gal, M. & Elkin-Koren, N. (2016). Algorithmic Consumers. Harvard Journal of Law and Technology, 30(2), pp. 309-354.
Gautier, A., Ittoo, A., Cleynenbreugel, P. (2020). AI Algorithms, Price Discrimination and Collusion: A Technological, Economic and Legal Perspective. European Journal of Law and Economics, 50, pp. 405-435.
Gerunov, A. (2020). Prilozhenie na klasifikatsionni algoritmi za modelirane na ikonomicheski izbori. Ikonomicheska misal, No. 2, s. 45-67. [Герунов, А. (2020). Приложение на класификационни алгоритми за моделиране на икономически избори. Икономическа мисъл, No. 2, с. 45-67] (in Bulgarian).
Harrington, J. E. (2018). Developing Competition Law for Collusion by Autonomous Artificial Agents. Journal of Competition Law & Economics, 14(3), pp. 331-363.
Hellwig, M., Hüschelrath, K. (2017). Cartel Cases and the Cartel Enforcement Process in the European Union 2001-2015: A Quantitative Assessment. The Antitrust Bulletin 62(2). pp. 400-438.
Horstmann, N., Krämer, J. & Schnurr, D. (2018). Number Effects and Tacit Collusion in Experimental Oligopolies. The Journal of Industrial Economics, 66(3), pp. 650-700.
Ilieva, I. (2020). Varhovenstvoto na pravoto i izkustveniyat intelekt. Izvestiya. Spisanie na Ikonomicheski universitet – Varna 64(3), s. 210-226. [Илиева, И. (2020). Върховенството на правото и изкуственият интелект. Известия. Списание на Икономически университет – Варна, 64(3), с. 210-226] (in Bulgarian).
Ivaldi, M., Jullien, B., Rey, P., Seabright, P., Tirole, J. (2003). The Economics of Tacit Collusion. Final Report for DG Competition. European Commission. Jedličková, B. (2019). Digital Polyopoly. World Competition, 42(3), pp. 309-334.
Kastius, A., Schlosser, R. (2021). Dynamic Pricing under Competition Using Reinforcement Learning. Journal of Revenue and Pricing Management, 27 February, pp. 1-14.
Klein, T. (2021). Autonomous Algorithmic Collusion: Q-learning under Sequential Pricing. The RAND Journal of Economics, 52(3), pp. 538-558.
Mehra, S. K. (2016b). US v. Topkins: Can Price Fixing be Based on Algorithms? Journal of European Competition Law & Practice, 7(7), pp. 470-474.
Mehra, S. K. (2016a). Antitrust and the Robo-Seller: Competition in the Time of Algorithms. Minnesota Law Review, 100, pp. 1323–75.
Miklós-Thal, J. & Tucker, C. (2019). Collusion by Algorithm: Does Better Demand Prediction Facilitate Coordination Between Sellers? Management Science, 65(4), pp. 1552-1561.
Monopolkommssion (2018). Hauptgutachten XXII: Wettbewerb 2018. Bonn.
O’Connor, J. & Wilson, N. E. (2021). Reduced Demand Uncertainty and the Sustainability of Collusion: How AI could affect Competition. Information Economics and Policy, 54 (March), pp.1-22.
OECD (2017). Algorithms and Collusion: Competition Policy in the Digital Age. Available at www.oecd.org/competition/algorithms-collusion-competition-policy-in-the- digital-age.htm.
Potters, J., & Suetens, S. (2013). Oligopoly Experiments in the Current Millennium. Journal of Economic Surveys, 27(3), pp. 439-460.
Prodanov, Hr. (2018a). Smartta na molovete i vazhodat na platformite. Ikonomicheski i sotsialni alternativi, No. 1, s. 117-130 [Проданов, Хр. (2018a). Смъртта на моловете и възходът на платформите. Икономически и социални алтернативи, No. 1, с. 117-130] (in Bulgarian).
Prodanov, Hr. (2018b). Potrebitel 5.0. Ikonomicheska misal, No. 2, s. 84-102 [Проданов, Хр. (2018b). Потребител 5.0. Икономическа мисъл, No. 2, с. 84-102] (in Bulgarian).
Prodanov, Hr. (2019). Za neobhodimostta ot politicheska ikonomiya na internet na neshtata. Ikonomicheski i sotsialni alternativi, No. 2, s. 124-138 [Проданов, Хр. (2019). За необходимостта от политическа икономия на интернет на нещата. Икономически и социални алтернативи, No. 2, с. 124-138] (in Bulgarian).
Prodanov, Hr. (2020). Konvergentnost na tehnologiite na Chetvartata industrialna revolyutsiya i sistemnite sledstviya za ikonomikite i obshtestvata (chast I i II). Ikonomicheski i sotsialni alternativi, No. 4, s. 101-132 [Проданов, Хр. (2020). Конвергентност на технологиите на Четвъртата индустриална революция и системните следствия за икономиките и обществата (част I и II). Икономически и социални алтернативи, No. 4, с. 101-132] (in Bulgarian).
Radev, E. (2021). Etichnite predizvikatelstva pred Evropeyskiya sayuz pri izpolzvaneto na izkustveniya intelekt. Izvestiya. Spisanie na Ikonomicheski universitet – Varna, 65 (3), s. 310-331 [Радев, Е. (2021). Етичните предизвикателства пред Европейския съюз при използването на изкуствения интелект. Известия. Списание на Икономически университет – Варна, 65 (3), с. 310-331] (in Bulgarian).
Radoev, M. (2021). Savremenni tendentsii v razvitieto na bazite ot danni. Ikonomicheski i sotsialni alternativi, No.1, s. 5-15 [Радоев, М. (2021). Съвременни тенденции в развитието на базите от данни. Икономически и социални алтернативи, No.1, с. 5-15] (in Bulgarian).
Schwalbe, U. (2018). Algorithms, Machine Learning, and Collusion. Journal of Competition Law & Economics, 14(4), pp. 568-607.
Seele, P., Dierksmeier, C., Hofstetter, R., Schultz, M. (2021). Mapping the Ethicality of Algorithmic Pricing: A Review of Dynamic and Personalized Pricing. Journal of Business Ethics, 170, pp. 697-719.
Slavova, M. (2016). Digitalna transformatsiya na biznesa. Ikonomicheski i sotsialni alternativi, No. 4, s. 142-149 [Славова, М. (2016). Дигитална трансформация на бизнеса. Икономически и социални алтернативи, No. 4, с. 142-149] (in Bulgarian).
Stoilova, V. (2020). Za duha na digitalniya kapitalizam. Ikonomicheski i sotsialni alternativi, No. 1, s. 145-152 [Стоилова, В. (2020). За духа на дигиталния капитализъм. Икономически и социални алтернативи, No. 1, с. 145-152] (in Bulgarian).
Sutton, R. S.; Barto, A. G. (2018). Reinforcement Learning: An Introduction. Cambridge, MA: The MIT Press.
Todorov, A. (2010). Digitalna konvergentsiya: razvitie i ikonomicheski problemi. Nauchna konferentsiya na Rusenski universitet „Angel Kanchev”, 29-30.10.2010, T. 49, seriya 5.1 Ikonomika i menidzhmant. Ruse, s. 183-187 [Тодоров, А. (2010). Дигитална конвергенция: развитие и икономически проблеми. Научна конференция на Русенски университет „Ангел Кънчев”, 29-30.10.2010, Т. 49, серия 5.1 Икономика и мениджмънт. Русе, с. 183-187] (in Bulgarian).
Todorov, A. (2020). Algoritmite i konkurentniya ideal. V: Ikonomicheska nauka, obrazovanie i realna ikonomika: razvitie i vzaimodeystviya v digitalnata epoha. Varna: Nauka i ikonomika, s. 147-158 [Тодоров, А. (2020). Алгоритмите и конкурентния идеал. В: Икономическа наука, образование и реална икономика: развитие и взаимодействия в дигиталната епоха. Варна: Наука и икономика, с. 147-158] (in Bulgarian).
Uytsel, S. (2018). Artificial Intelligence and Collusion: A Literature Overview. In: Corrales, M. et al. (eds.). Robotics, AI and the Future of Law. Singapore: Springer, pp. 155-182.
Yordanova, St., Stefanova, K. (2017). Izvlichane na znaniya ot nestrukturirani danni chrez analiz na mnenieto na potrebiteli. Ikonomicheski i sotsialni alternativi, No.1, s. 13-27. [Йорданова, Ст.; Стефанова, К. (2017). Извличане на знания от неструктурирани данни чрез анализ на мнението на потребители. Икономически и социални алтернативи, No.1, с. 13-27] (in Bulgarian).