Кабакчиева, Д. (2012). Изследване на Data Mining модели за класификация (дисертация за присъждане на ОНС „доктор“). С.: Институт по информационни и комуникационни технологии, БАН.
Матеев, С. (2016). Оценка на методи за диагностика и прогнозиране – аналитични процедури и интерпретация на данните. Нов български университет.
Семерджиева, В., Б. Георгиев, Ч. Дамянов (2013). Анализ на данни от диагностични тестове. Научни трудове на УХТ, 60, с. 292-297.
Akinci, S., E. Kaynak, E. Atilgan, & Ş. Aksoy (2007). Where does the logistic regression analysis stand in marketing literature? A comparison of the market positioning of prominent marketing journals. European Journal of Marketing, 41(5/6), рр. 537-567.
Breiman, L. (2001). Random forests. Machine learning, 45(1), рр. 5-32.
Breiman, L., J. H. Friedman, R. A. Olshen & C. J. Stone (1984). Classification and regression trees. Belmont, CA: Wadsworth. International Group, 432, рр. 151-166.
Carletta, J. (1996). Assessing agreement on classification tasks: the kappa statistic. Computational linguistics, 22(2), рр. 249-254.
Chandola, V., A. Banerjee & V. Kumar (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), рр. 1-58.
Cortes, C. & V. Vapnik (1995). Support-vector network. Machine Learning, 20, рр. 1-25.
Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal Statistical Society: Series B (Methodological), 20(2), рр. 215-232.
Eggermont, J., J. N. Kok & W. A. Kosters (2004). Genetic programming for data classification: Partitioning the search space. Proceedings of the 2004 ACM symposium on Applied computing. ACM, March, рp. 1001-1005.
Fawcett, T. (2004). ROC graphs: Notes and practical considerations for researchers. Machine learning, 31(1), рр. 1-38.
Fernández-Delgado, M., E. Cernadas, S. Barro & D. Amorim (2014). Do we need hundreds of classifiers to solve real world classification problems? The Journal of Machine Learning Research, 15(1), рр. 3133-3181.
Gerunov, A. (2019). Modeling Economic Choice under Radical Uncertainty: Machine Learning Approaches. International Journal of Business Intelligence and Data Mining, 14 (1-2), рр. 238-252.
Hastie, T., R. Tibshirani & J. Friedman (2013). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media. World classification problems? The Journal of Machine Learning Research, 15(1), рр. 31333181.
Hastie, T., R. Tibshirani & J. Friedman & J. Franklin (2005). The elements of statistical learning: data mining, inference and prediction. Springer Science & Business Media.
Hensher, D. A. & L. W. Johnson (2018). Applied discrete-choice modelling. Routledge.
Hofmann, H. (1994). German Credit Data (Statlog). Institute for Statistic and Econometrics. University of Hamburg.
Hyman, M. R. & Z. Yang (2001). International marketing serials: a retrospective. International Marketing Review, 18(6), рр. 667-718.
Lewis, D. D. (1998). Naive (Bayes) at forty: The independence assumption in information retrieval. In: European conference on machine learning. Springer, Berlin, Heidelberg, рp. 4-15.
McFadden, D. (1981). Econometric models of probabilistic choice. Structural analysis of discrete data with econometric applications. US: Berkeley, рр. 198-272.
Moro, S., P. Cortez & P. Rita (2014). A data-driven approach to predict the success of bank telemarketing. Decision Support Systems, 62, рр. 22-31.
Omar, S., A. Ngadi & H. H. Jebur (2013). Machine learning techniques for anomaly detection: an overview. International Journal of Computer Applications, 79(2).
Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2), 1883.
Phua, C., V. Lee, K. Smith, & R. Gayler (2010). A comprehensive survey of data mining-based fraud detection research. ArXiv preprint arXiv:1009.6119.
Qiu, J., Q. Wu, G. Ding, Y. Xu & S. Feng (2016). A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing, 2016(1), 67.
Ripley, B. D. & N. L. Hjort (1996). Pattern recognition and neural networks. Cambridge, UK: Cambridge University Press.
Rousseeuw, P. J. & M. Hubert (2018). Anomaly detection by robust statistics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(2), pp. 1-14.
Tanwani, A. K., J. Afridi, M. Z. Shafiq & M. Farooq (2009). Guidelines to select machine learning scheme for classification of biomedical datasets. In: European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Springer, Berlin, Heidelberg, рр. 128-139.
Walter, S. D. (2005). The partial area under the summary ROC curve. Statistics in medicine, 24(13), рр. 2025-2040.
Yeh, I. C. & C. H. Lien (2009). The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Systems with Applications, 36(2), рр. 2473-2480.